
Coral reefs as chaos: an assumption-free, system-state approach to causality, dynamics and 
predictions 

SUMMARY 
Although there is a high risk of continued reef loss on a global scale, responses to widespread 
stressors at local and regional scales indicate that resilience to chronic stress is possible and 
highly variable. Coral reefs are complex systems that exhibit nonlinear behavior, including 
chaos, feedbacks, multistabilities, cascading effects, adaptation and emergent phenomena. Using 
traditional models to resolve dynamical processes that control resilience is problematic, due to 
error from excluded variables, incorrectly identifying mirage correlations as system drivers, and 
untestable assumptions about relationships between variables. Alternatively, a changing coral 
reef can be considered a nonlinear dynamical system, whose trajectory through different states 
over time depends on previous states, and is determined by a set of rules.  
 
I present a promising new technique for understanding and forecasting ecosystems that is 
adapted from single-species Empirical Dynamic Modeling (EDM), using time series data to 
reconstruct nonlinear state-space. This reconstruction preserves the topology of the system’s 
attractor manifold, which represents the trajectory of linked variables through state-space. This 
allows us to correctly discern shared causal drivers from interactions, as well as predict the data 
values and timing of major systemic change. Without the need for error-inducing model 
assumptions, this approach has outperformed other forecasting models in multispecies 
assemblages in other systems. Extending the techniques of nonlinear dynamics to the ecosystem 
scale and coral reefs will both improve our knowledge of previously intractable coral reef 
dynamics, as well as improve the predictability of complex ecological systems. This research 
will establish tools that directly inform ecosystem-based management in a changing world. 
Furthermore, these approaches are likely to be interchangeably useful with any complex 
nonlinear system, thereby magnifying the impact of the results.  
 
RATIONALE 
There is widespread consensus that management efforts would benefit from adopting an 
ecosystem-based approach. This would allow us to be explicit about the trade-offs between 
disparate system uses that are generated by interspecies interactions and their shared responses to 
abiotic drivers. Coral reefs are complex systems that vary in structure, species diversity, and 
ecological processes across space and time (Hatcher, 1997). Globally, coral reef survival is 
increasingly tenuous: many coral reefs are declining in coral cover (Gardner et al, 2003; Bruno 
and Selig, 2007), have reduced function and resilience (Nystrom et al, 2000), and individual 
coral colonies have degraded health where intensive human influence is present (Richardson, 
1998; Hughes et al, 2003). Yet, ecosystem approaches to understanding coral reefs remain 
insoluble. The majority of management in the US is based on a small number of species 
assessments with limited understanding of how each contributes to system-scale dynamics. 
These traditional models, which do not explicitly include observations of multiple scales and 
dynamics over time, by definition overlook critical facets of coral reef dynamical systems that 
are likely important to explaining long-term system behavior and health.  
 
Despite abundant empirical evidence that the many biotic and abiotic functional processes on 
which reefs depend interact nonlinearly (Hughes et al, 2005, Mumby et al, 2007), these multi-
species assessment data are modeled mechanistically using a small number of parameters that 



rely heavily on ecological assumptions. These assumptions range from constant natural mortality 
and diet preferences to a lack of variation among individuals and the absence of contemporary 
evolution. In nonlinear systems, the relatively small errors from those model assumptions 
propagate unpredictably into large differences in model predictions, and the management advice 
they generate.  Outside of a handful of well-studied systems (e.g. rocky intertidal communities, 
small lakes), it is impossible to test these assumptions by direct observation or experimental 
manipulation. Figure 1. is a food web of a relatively low-diversity Jamaican coral reef 
(Roopnarine and Hertog, 2012), without microbial, physical or chemical interactions. This 
overwhelming tangle highlights the practical impossibility of correctly specifying a 
parameterized model for systems like it. Regardless of how many species they represent, all of 
the tools currently available to reef management are based on the implicit assumption that we 
know how the system works (or that there are only a few candidate models to choose from), 
which of course, we do not. State-space EDM approaches provide an alternative to these models 
that does not rely on ecological assumptions.  
 
Coral reefs exhibit chaotic behavior that is locally unstable but globally stable (e.g. Huppert and 
Stone, 1998). A nonlinear system can be simplified into a trajectory through state-space where 
each point in the trajectory contains the state dynamics of the system and forms an attractor 
manifold. Using EDM, we can reconstruct the chaotic attractor manifold of the system using its 
historical data (see Figure 2.), which shows where the system has been and where the system 
will go in terms of its globally stable dynamics, and regardless of its local instabilities. 
 
It was recently shown that nonparametric methods based on EDM outperform mechanistic 
models in both forecasting (Perretti et al, 2013; Perretti et al, 2013a) and management (Boettiger 
et al, 2015; Munch et al. in review) for population data generated with a variety of simulation 
models. Although these methods were originally derived for deterministic systems (Takens, 
1981), they have since been generalized to stochastic systems (Starke et al, 1997; Ragwitz and 
Kantz, 2002), nonstationary systems (Munch et al, 2016; Hegger et al, 2000), short time series 
(Hsieh, 1998), and systems with substantial observation noise (Casdagli, 1991).  

SCIENTIFIC OBJECTIVES 
This work targets information gaps of direct relevance to managing coral reef ecosystems with 
the following scientific objectives:  
 

1. Identify causal drivers of coral reef ecosystem decline 
2. Identify mechanisms and timing of regime shifts in coral reef ecosystems 
3. Predict near-term future of reef system structure and function 
4. Provide dynamically-explicit management recommendations to prevent collapse and 

enhance resilience of reef systems  
 
These objectives will be achieved by: 
 

1. Developing a causal network of interactions for a reef system  
2. Discerning bifurcation topology of regime shifts  
3. Forecasting the future of populations, multi-species assemblages, reef systems and 

human-ecosystem coupled systems 
4. Using increased understanding of causality, dynamics and forecasting to work with local 



experts in order to strategically optimize coral reef conservation and management efforts 
 
METHODS 
The intent of the proposed work is to use techniques of nonlinear dynamics and forecasting, 
namely empirical dynamical modeling (Ye et al, 2015), convergent cross-mapping (Sugihara et 
al, 2012), and bifurcation theory (Kuznetsov, 2013), to develop ecosystem-implicit models that 
inform management actions.  These approaches treat an observable as a trajectory through state-
space, and if we can reconstruct the attractor manifold that describes that system’s trajectory, we 
can recreate its dynamics and make predictions about its trajectory into the near future. To test 
these approaches empirically, we will use existing long-term time series from the Florida Keys 
reef region that has extensive data resources originating from academic institutions, citizen 
science monitoring programs (e.g. the REEF database), Florida Keys National Marine Sanctuary 
Research and Monitoring Program (e.g. Keller, 2001), and South Florida National Coral Reef 
Monitoring Program (via https://grunt.sefsc.noaa.gov/rvc_analysis20/). 
 
Background 
Takens’ (1981) theorem states that for any dynamical system, we can recover exact system 
dynamics from a time series of a single observable, using time lags as surrogate dimensions of 
the attractor. Thus, given a time series from a single species, Takens provides a rigorous 
justification for modeling the next state nt, in terms of past states, as   
 
𝑛! = 𝑓 𝑛!!!,𝑛!!!,…𝑛!!! + 𝜖!             
 
where f is a function that converts the history of values into the next estimate for that variable. 
Although data for only one species is being used, Takens’ theorem guarantees that, as long as 
there are enough time lags, the estimated f implicitly incorporates the dynamics of all other 
species. Therefore, we can use lags to reconstruct the chaotic attractor, which inherently contains 
the dynamics of the system (Figure 3.) This has been extended to multiple observables (Deyle 
and Sugihara, 2011). 
 
1. Identifying causal drivers/Developing causal network  
Ecosystems are characterized by weak coupling among species and external forcing from abiotic 
factors (Grenfell et al, 1998) that apply to multiple species simultaneously, thereby creating 
‘mirage correlations’ between species (Sugihara et al, 2012). Convergent cross-mapping (CCM) 
allows us to distinguish between coupled species and those that share a common driver by 
determining if the state of one attractor manifold can reliably estimate states of the others 
(Sugihara et al, 2012, Figure 4.) 

 
To adapt the single-species method of empirical dynamical modeling to ecosystems, we will first 
define an ecosystem value for each reef as an index of known indicators of function (e.g. coral 
recruitment, algae community structure) adapted from the IUCN Coral Health Index (Kaufman 
et al, 2011), producing a single ‘ecosystem value’ for each time observation. We can then use 
CCM of the ecosystem value manifold and various population demographics (e.g. coral 
mortality, crustose coralline algae abundance) to identify causal drivers of ecosystem change as 
either bidirectionally causal due to coupling, unidirectionally causal, or transitively causal, which 
implies interactions with an indirect factor (Sugihara et al, 2012).  Using this set of interactive 
and causal variables that were not used to produce the ecosystem value, we can produce a causal 



network of dynamical interactions between these variables (see Figure 5.). This will thereby 
tease apart the dynamics that lead to ecosystem change, with an ideal ecosystem value defined a 
priori. CCM will be performed with a suite of available biotic, abiotic and human economic 
factors (from sources described above) to develop the causal network for a single reef and a reef 
region.  
 
2. Identifying mechanisms and timing of regime shifts/discerning bifurcation topology 
Bifurcation occurs when a small change in a system’s state parameters produces a topological 
change in the behavior of the system (Kuznetsov, 2013). Stable states in ecology are similarly 
vulnerable to changes that lead to catastrophic phase shifts between alternative stable states, and 
this is a well-documented source of coral reef ecosystem loss that is often ‘permanent’ on 
observable time-scales (Hughes et al, 2003). For example, if there were a pencil balancing on top 
of a desk, movement and position would be its state parameters. A small change in either, or a 
small interaction between the two, could cause the pencil to leave its balanced state and topple 
over, creating a system bifurcation from the balanced to the toppled system state. In an 
ecosystem, these state or control parameters are likely to be causal drivers of change when 
derived from the methods above (1.) and can be tested as mechanisms using methods in 
bifurcation theory. Bifurcation theory analyzes the movement of these control parameters near 
fixed points, or points of stability, in their state-space topology. When applied to an ecosystem, 
this reveals patterns of dynamical behavior in each stable state, and as one state approaches the 
critical threshold to another. If the existence and behavior of control parameters are known, we 
can predict what values of these variables will lead to a bifurcation, as well as its timing.  
 
The literature on early critical threshold detection focuses on methods appropriate for systems 
with a stable fixed point approaching a fold catastrophe, in which critical slowing down is 
expected as the dominant eigenvalue of the system approaches zero (Sheffer et al, 2009).  While 
the hosts of indicators that have been developed recently seem to work reasonably well in some 
cases (e.g. Karr et al, 2015), they fail when time series are short and noisy (Perretti and Munch, 
2012).  Moreover, there are many other types of bifurcations that might be ecologically relevant 
(Boettiger and Hastings, 2013). Using methods analogous to those in (Deyle et al, 2015), we 
should be able to estimate the dominant eigenvalue of the discrete time Jacobian, giving an 
estimate of the local Lyapunov exponent (Brown et al, 1991). This can be used to measure 
divergence of nearby trajectories, and provide a robust indicator of an impending regime shift 
that works for a wider range of bifurcations than the indicators based on critical slowing down.  
 
3. Forecasting the future of reef systems 
Populations and ecosystems are notoriously difficult to predict because of their nonlinearity and 
complexity. We will use EDM to reconstruct the chaotic attractor manifolds of individual species 
abundance, as well as the index of ecosystem value described in (1.) EDM approaches are based 
on locally-weighted regressions in which the distance between points in state-space determines 
the weights, which allows a near-term forecast into the future of the system’s trajectory. We will 
investigate the predictive power of using EDM to make population predictions for individual reef 
species, multi-species assemblages, and system health at individual and regional reef scales. The 
ecosystem value described above will be used as a proxy for health at the system and regional 
scales. Multidimensional embedding will be used to make predictions about coupled human-
ecosystem forecasts, using the Halpern Index adapted for this system (Halpern et al, 2012).  



 
4. Management recommendations  
These studies will produce a suite of the following actionable results and tools with direct 
management value. Objective 1. will yield two products, a list of causal drivers and their relative 
strengths for a given reef region, and a causal network for a given reef region. The causal 
network will be delivered both graphically for that region and as a model that can be used to 
create causal networks for other systems. Objective 2. will result in a document with a graphical 
depiction of a phase portrait for a given reef, and an explanation of the mechanisms and timing 
of potential regime shifts in that system under different scenarios. Objective 3. will produce a set 
of near-term forecasts for individual populations, multi-species assemblages, an individual reef, a 
reef region and a coupled human-reef system that can be used to test EDM methods and make 
recommendations. A small working group of local ecologists, managers and stakeholders from 
the reef region, and the investigators of this project, will be created with the objective of 
converting the results into policies. The outcome of this working group will be a document with 
specific and actionable monitoring, management and policy recommendations for their locale.  
 
RELEVANCE OF RESULTS 
Despite enormous effort, our knowledge of marine systems is relatively poor, in part due to their 
overwhelmingly complexity, as well as the difficulty of observation. Given these data 
limitations, we are fortunate to be able to develop tools for which comparatively little data are 
needed, which also explicitly account for the dynamical nonlinearity of interactions in these 
systems. The proposed work will develop tools to facilitate robust management of marine 
systems that allow us to address the complexity of biotic and abiotic interactions on coral reefs, 
without making untestable assumptions, introducing error from excluded variables, or incorrectly 
identifying mirage correlations as system drivers.  
 
The contribution of causality identification and a causal network of interactions will deepen our 
understanding of the interdependent dynamics among factors in a complex system, allowing us 
to target particularly influential components for efficient management. The application of 
bifurcation theory to ecological regime shifts has been underemployed in the literature, and its 
development will becoming increasingly valuable as more systems move towards their ‘tipping 
points’ with increased anthropogenic influence. Coral reefs offer an ideal model system for 
developing the theory and practical utility of ecosystem stabilities.  
 
EDM forecasting on a suite of indicators is both inherently valuable for predicting how those 
variables will dynamically respond to change, as well as improving our understanding and 
application of EDM. Developing these methods for use at a range of scales will be indispensable 
to future ecosystem managers of all complex systems, but particularly those that are vulnerable 
and in need of intervention in the near-term.  
 
The proposed work is essential to understanding coral reef dynamics, while also expanding the 
application of nonlinear dynamics to more and larger marine systems. This research will advance 
evidence-based coral reef conservation and directly inform management action and management 
performance assessment. Therefore, this project aligns closely with both NOAA’s and my own 
missions to improve our knowledge and ability to predict complex ocean ecosystem dynamics, 
and to use it to conserve our valuable resources. 



 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Food web of Jamaican coral 
reef (Roopnarine and Hertog, 2012) 

Figure 2. A graphical representation of a chaotic 
attractor constructed from three time series 
variables (Ye, 2015) 

Figure 3.  A graphical representation of how a 
chaotic attractor can be reconstructed from 
three lags in a time series (Ye, 2015) 
	
  

Figure 4.  Graphical representation of convergent 
cross-mapping (Sugihara et al, 2012) 
	
  

Figure 5. Conceptual cases of 
coupling and example causal 
networks that can be derived 
(Sugihara et al, 2012)	
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